• <samp id="6ws2i"><tfoot id="6ws2i"></tfoot></samp>
    <samp id="6ws2i"><pre id="6ws2i"></pre></samp>
  • <samp id="6ws2i"><center id="6ws2i"></center></samp>
  • <strike id="6ws2i"></strike>
    <strike id="6ws2i"></strike>
  • 當前位置:首頁  >  技術文章  >  多層壓電陶瓷變壓器的振動與疲勞

    多層壓電陶瓷變壓器的振動與疲勞

    更新時間:2022-10-18  |  點擊率:1101

     

    多層壓電陶瓷變壓器的振動與疲勞

       

    多層壓電陶瓷變壓器的振動與疲勞

    推薦使用:GDPT-900A型變溫壓電測試系統,ZJ-3型靜壓電測試系統 

     

     

    壓電變壓器最早于1956年由C.A.Rosen提出。20世紀80年代初,清華大學提出了多層獨石化壓電變壓器的創意及概念,并在國際上最早開展了多層壓電變壓器的研究。由于壓電變壓器升壓比高、電磁干擾小、轉換效率高、體積小、質量輕、輸出波形好等優點,近年來在液晶顯示器背光電源、高壓臭氧發生器、空氣清新器、雷達等領域中獲得了應用。

       壓電變壓器是電場與振動場間相互耦合的諧振器件,在諧振狀態下,器件會因負載、使用環境、輸入電壓、材料等因素,產生發熱、疲勞甚至斷裂等問題。有關壓電陶瓷材料疲勞的研究較多,學者提出了一些疲勞機理,目前廣為大家接受的解釋主要有疇夾持模型、電極連接不合適以及內應力集中。Zuo等人認為,在電場的作用下,由熱應力引起的微裂紋將成為裂紋擴展的根源。Ru等人的研究表明,多層陶瓷器件失效的主要機制是電極與陶瓷材料之間的界面開裂以及電部的界面開裂。Gong等人通過非線性有限元法模擬了多層壓電器件中內電極周圍的電場分布,并發現在內電部邊緣的電場分布非常不均勻,因此電極周圍的陶瓷材料因鐵電轉變或電致伸縮而產生不協調變形,形成裂紋。為下一步深入研究壓電變壓器微裂紋的形成及擴散機理,本實驗研究了壓電變壓器的微振動及疲勞行為。采用激光掃描測振儀以及   疲勞加載實驗測試壓電變壓器的特性變化。  

        1  壓電變壓器機理及結構

         通過摻雜CdCO、SrCO?、ZnO或Li2CO?獲得壓電變壓器所用高性能低燒兼優的Pb(Mg?/?Nb?/?)O?.Pb(Ni?/?Nb?/?)O?一Pb(ZrTi)O?壓電材料。多層壓電變壓器的結構如圖1所示。器件內部有19層陶瓷介質,外形尺寸約30 mm8 mmx3 mm。輸入電極在器件的中部,輸出電極分布在器件的兩端。在交變輸入電壓以及機電耦合系數k??和k??的作用下,變壓器沿長度方向發生諧振。對于半波諧振,有一條節線出現在器件的中心位置,對稱的振動使變壓器在兩端產生相同的輸出電壓,即升壓比相同。  

        利用有限元分析軟件,對多層壓電變壓器的振動模態進行了理論計算與分析。分析采用的特性參數見表1。有限元法獲得變壓器半波諧振頻率約55 kHz,全
    波諧振頻率約110 
    kHz。  
     
        2 諧振頻率的測試
         精確測定多層壓電變壓器的諧振頻率主要包括兩個方法:用Polytec OFV 056測振掃描探頭對樣品在一定頻率范圍掃描,獲得樣品在激光入射方向上樣品表面各點的振動速度與位移;用信號發生器與示波器配合,觀測輸出電壓,最終測得諧振頻率。
        選擇掃頻模式(FFT)鋇IJ試樣品表面的振動,得到振動速率對頻率的曲線,如圖2所示。樣品在55.7 kHz出現了明顯的峰值,表明樣品在該頻率發生諧振,結合有限元分析結果,可以確定在55.7 kHz頻率處于半波諧振模態。
     
         根據諧振原理,當壓電變壓器處于諧振時,其振動尤為強烈,升壓比達到局部極大值。因此,控制輸入信號的波形和電壓幅值不變,改變輸入信號的頻率,通過觀察輸出電壓幅值的變化,可以更精確地測定樣品的諧振頻率。實驗裝置見圖3。其中,信號發生器為DF1692型多功能任意波形發生器,變壓器專用功率放大器為KH-1A型寬帶功率放大器,示波器為TDS5054數字熒光顯示示波器,R1代表94 kΩ的水泥電阻負載,R代表4 kΩ的串聯小電阻。

        信號發生器輸出正弦波形,實際輸入電壓峰峰值約10 V。在粗測諧振頻率55 kHz附近微調頻率,測量串聯小電阻兩端的輸出電壓,如圖4。輸出電壓的極大值出現在54.8 kHz處,此為樣品的實際振頻率。

       3   疲勞加載實驗 

       疲勞加載實驗條件:輸入信號的波形為正弦波,頻率為半波諧振頻率54.8 kHz,電壓峰峰值為30 V(實際工作電壓在12 V以下)。輸出負載為94 kΩ無感電阻。設置循環加載次數為109次,即連續振動約5 h。

       3.1  諧振頻率的漂移

        由于疲勞加載可能會導致諧振頻率的改變,因此在各項對比分析之前,首先需要重新精確測定變壓器樣品的半波諧振頻率。用示波器觀察疲勞加載后變壓器樣品的輸出電壓,確定疲勞后諧振頻率為55.6 kHz,與疲勞加載前的諧振頻率54.8 kHz比,相對漂移量約1.5%。
        3.2   諧振模態振動的衰退
       使用激光測振儀,在定頻模式測得疲勞加載后變壓器樣品在一個振動周期里的圖像。圖5a中,各測量點的振動相位比較一致,說明在疲勞加載前,變壓器樣品長度方向上的形變十分協調:圖5b中,各測量點的振動有些雜亂,這說明在疲勞加載后樣品振動有些不穩定。從直觀上可以判斷,疲勞加載使得變壓器樣品的振動表現有所衰退。定量分析上,圖5a中顯示輸出端端部的振動速率在300μm/s左右,而圖5b中僅在100 μm/s左右。由此表明,疲勞加載除了使多層壓電  變壓器的形變與振動的協調性變差外,還使得整體的振動速率下降,振動幅度變小。

       輸入信號的頻率固定在樣品的半波諧振頻率54.8kHz處,改變輸入信號的電壓幅值,測得輸入端端部振幅Ai對輸入信號電壓峰峰值VP-P的曲線,如圖6所示。在輸入電壓小于4 V時,變壓器輸入端振幅與輸入電壓呈現線性關系;當電壓大于4V后,進入非線性區;大于10 V后,振幅逐漸趨于飽和。

     
        同時,疲勞后的輸入端振幅平均比疲勞前減少超過10%,且疲勞后的曲線不穩定。這說明109次的循環加載引起了變壓器樣品的部分疲勞,樣品的端部及整體的振動幅度和速率都減小了約10%。但輸入電壓小于4 V時,輸入端振幅與輸入電壓的線性關系較好。
        3.3  疲勞加載前后輸入輸出特性的對比
        由于負載對輸入輸出特性的顯著影響,測試需要在不同的負載電阻下重復數次,結果見圖7。當輸入電壓峰峰值小于20 V時,在4個負載阻值下,輸出電壓與輸入電壓都保持了較好的線性關系。當負載的阻值小于110 kΩ時,在10 v至U60 V的整個電壓峰峰值的范圍內,輸出電壓都隨輸入電壓的增加而線性增加;當負載電阻大于160kΩ時,輸出電壓在輸入電壓峰峰值大于20 v起逐漸顯示出非線性。
         根據圖7中負載電阻87 kΩ對應的兩條曲線,可知疲勞加載后的曲線絕大部分低于疲勞加載前的,即在10~60 V的輸入電壓峰峰值范圍內,疲勞加載后變壓器樣品的升壓比總體來看是降低了,約是疲勞前的85%左右,這與輸入端端面振動幅度的減小比率也比較符合。
          4結 論

         1)有限元法獲得變壓器半波諧振頻率約55 kHz,全波諧振頻率約110 kHz。
         2)激光測振儀測得壓電變壓器半波諧振頻率為55.7kHz;信號發生器與示波器配合,根據輸出顯示,測得壓電變壓器的諧振頻率為54.8 kHz。實驗結果與有限元計算基本一致。
         3)疲勞加載除了使多層壓電變壓器的形變與振動的協調性變差外,還使得整體的振動速率下降,振動幅度變小,升壓比降低,約是疲勞前的85%左右
     。


    我們專業提供功能材料測試設備及測試服務:

    一、壓電材料測試裝置:ZJ-3型精密D33測試儀,ZJ-4型寬量程精密D33測試儀,ZJ-5型疊層壓電測試儀,ZJ-6型多功能參數壓電測試儀,GDPT-900A型高溫壓電測試系統,JKZC-YDZK03A型高精度壓電阻抗分析儀,YDH-1型壓電電荷測試儀,YDB-03型壓電陶瓷表面電壓測試儀

    二、壓電材料制樣設備:PZT-JH10/4型壓電陶瓷極化裝置,PZT-JH20/1型粉末極化裝置,PZT-JH30/3型壓電陶瓷及薄膜綜合極化裝置,ZJ-D33-YP15型壓片機

    三、介電材料測試裝置:GWJDN-600型四通道高溫介電測試儀,GWJDN-1000型四通道高溫介電測試儀

    四:鐵電材料測測試儀:ZT-4A鐵電測試儀 ,FE-5000型變溫鐵電測試系統,ECM -150型電卡效應測試系,DCD-100型儲能電介質充放電測試系統,

    五、BKTEM-Dx熱電材料性能測試儀

    高溫功能材料測試設備:

    GDPT-900A型高溫D33測試系統,GWJDN-1000型四通道高低溫介電測試儀,HTRT-1000型導電材料高溫電阻率測試儀,JGWDZ-1000型金屬高溫電阻測量系統,BWGP-2000型變溫光譜測試系統(高低溫光譜系統),FSR-600材料高溫雙波段發射率測量系統,TSDC/TSC--400型熱激勵去極化電流測量系統,GWTF-300高溫鐵電材料測量系統  HTGSRM-1000型高溫氣敏材料測量系統,PTC/NTC-500高溫熱敏電阻材料參數測量分析系統,HTRS-1000型高溫半導體材料電阻率測試儀,PRPM-1000熱釋電系數高溫測試系統,HTRC-600型高溫導電材料電阻率測試系統,

     

     

    久久久久久国产精品无码下载| 亚洲精品NV久久久久久久久久| 精品无码一区二区三区电影| 日韩精品人妻系列无码专区免费| 久久国产精品99精品国产987| 三上悠亚国产精品一区| 国产线视频精品免费观看视频| 精品国产成人国产在线观看| 久久精品成人影院| 亚洲码国产精品高潮在线| 国产精品偷伦视频观看免费 | 无码AⅤ精品一区二区三区| 国产精品午夜爆乳美女| 四虎永久在线精品视频| 女人高潮内射99精品| 亚洲精品成人网久久久久久| 精品精品国产理论在线观看| 国产女人18毛片水真多18精品 | 三上悠亚精品二区在线观看| 欧洲熟妇精品视频| 久久免费精品一区二区| 99久久精品免费精品国产| 亚洲理论精品午夜电影| 99视频全部免费精品全部四虎 | 久久国产乱子伦免费精品| 精品成人A区在线观看| 亚洲最大天堂无码精品区| 国产精品夜夜爽范冰冰| 国产精品自在线拍国产第一页| 日韩精品无码免费专区网站| 久久丝袜精品综合网站| 国产福利91精品一区二区| 成人无号精品一区二区三区| 下载天堂国产AV成人无码精品网站| 精品无码国产自产拍在线观看蜜 | 久久精品嫩草影院| 精品国产伦一区二区三区在线观看| 精品久久久久久久无码久中文字幕| 国产成人久久精品| 国产亚洲精品无码专区| 99久久er热在这里只有精品99|